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Abstract problem formulation







minimize J(y , u) = 1
2 ||y − yd ||2L2(Ω)

+ R(u, y),

subj. to u ∈ Uad ⊂ U, y ∈ Yad ⊂ Y ,

e(y , u) = 0 .

(1)

Uad and Yad – sets of admissible controls resp. states (convex,
closed, non-empty).

Ex.: Uad = {u ∈ U : u ≤ u ≤ u}, Yad = {y ∈ Y : y ≤ y ≤ y}.

Equality constraint is a well-posed PDE:
for all u ∈ U there is a unique y ∈ Y (depending continuously
on u), so that

e(y , u) = 0, y def
= K (u) .
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Reduced problem formulation

If Uad = U and Yad = Y , problem can be reformulated as
unconstrained:

min
u∈U

J(u) =
1
2
||K (u) − yd ||2 +

β

2
||Lu||2, u ∈ Uad . (2)

If β ¿ 1, essentially we want solve

K (u) = yd .

However, problems of interest are ill-posed, need regularization:

L = I ⇒ find u of smallest norm ;
L = ∇ ⇒ find u of smallest variation.
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Motivating applications

1. Reverse advection-diffusion problems (source inversion):

T > 0 fixed “end-time”, yd end-time state, u initial state

z(·, t) transported quantity subjected to:






∂tz −∇ · (a∇z + bz) + cz = 0 on Ω
z(x , t) = 0 for x ∈ ∂Ω, t ∈ [0, T ]
z(x , 0) = u(x) for x ∈ Ω

K = S(T ): initial - to - final

K u = S(T )u def
= z(·, T )
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Further motivating applications

2. Elliptic optimal control problem:

PDE-constrained optimal control problem






minimize 1
2 ||y − yd ||2 + β

2 ||u||2 ,

subj to: −∆y = u , u|∂Ω = 0 ,

u ≤ u ≤ u .

If unconstrained, then K = (−∆)−1.
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The case of linear constraints

Assume K linear, Uad = U:

min
u

J(u) =
1
2
||Ku − yd ||2 +

β

2
||u||2

Newton’s method gives the solution explicitly in one step:

umin = uguess
0 − G−1 ∇J(uguess

0 ) ,

where
G = G(β) = I + β−1K ∗ · K ,

∇J(u) = u + β−1K ∗(Ku − yd ) .

Formulation is equivalent to the regularized normal equations

(βI + K ∗ · K )u = K ∗yd .
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Strategy: discretize-then-optimize

Natural FE discretization for the operator K :

min
u

J(u) =
1
2
||Khu − yd ||2 +

β

2
||u||2 .

Solution of discrete problem:

uh
min = uguess

0,h − Gh
−1 ∇Jh(u

guess
0,h ) ,

where
Gh = Gh(β) = I + β−1Kh

∗ · Kh ,

∇Jh(u) = u + β−1Kh
∗(Khu − πhyd ) ,

πh is the orthogonal projection onto the finite element space Vh

Main problem: need to invert the operator Gh efficiently.
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Main issues

The matrix representing the linear operator Gh is dense,
potentially large, and not available.

Matrix-vector product cost is comparable to two forward
computations (expensive, but feasible):

Gh · u = u + β−1K ∗
h · Khu .

Gradient computation also costs as much as two forward
computations (only done once):

∇Jh(u) = u + β−1K ∗
h (Khu − πhyd ) .

Need iterative methods.
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Solution using conjugate gradient

Eigenvalues of Gh cluster around 1 ⇒
CG is a good choice for solving inverting Gh:
the number of iterations

is independent of the resolution;
grows only logarithmically with β → 0.

A measure of success: speedup over CG.
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Multigrid strategies

major differences between Gh and an elliptic operator Ah:

Gh Ah

smoothing roughening
nonlocal local

cond(Gh) bounded cond(Ah) → ∞

as h → 0

Related multigrid work:

Hackbusch (1981), King (1992), Rieder (1997), Hanke and Vogel (1999), Kaltenbacher (2003),

Donatelli (2005), Biros and Dogan (2008), Draganescu and Dupont (2008), Borzi and

Kunisch (2005).

Lewis and Nash (2000)

overview: Borzi and Schultz (SIAM review, 2009)

more recent: Wathen, Stoll, Rees, Dollar, Draganescu and Soane, etc
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Two-grid approximation (heuristics)

Vh =

“smooth“ functions
︷︸︸︷

V2h ⊕
“rough“ functions

︷︸︸︷

W
denote π = π2h, ρ = I − π2h

Gh = πGhπ
︸ ︷︷ ︸

M1

+ ρGhπ
︸ ︷︷ ︸

M2

+ πGhρ
︸ ︷︷ ︸

M3

+ ρGhρ
︸ ︷︷ ︸

M4

since Ghρ =
(
I + β−1Kh

∗Kh
)
ρ ≈ ρ

M2 ≈ 0 M3 ≈ 0
M1 ≈ G2hπ M4 ≈ ρ

conclusion:

Gh ≈ Mh
def
= G2hπ2h ⊕ (I − π2h) .
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Multigrid for our problem
two-grid approximation (results)

Proposed preconditioner:

Lh
def
= (Mh)

−1 = G2h
−1π2h + (I − π2h) .

Theorem (A.D., Dupont 2004):

For h sufficiently small and u ∈ Vh

1 − C
hp

β
≤
〈
(Mh)

−1u, u
〉

〈
(Gh)−1u, u

〉 ≤ 1 + C
hp

β
,

where p is the order of the discrete method.
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From two-grid to multigrid
natural extension (V-cycle)

Natural extension to multigrid is suboptimal:

Lh = G2h
−1π2h + (I − π2h) ≈ G−1

h

⇓ (since L2h ≈ G2h
−1)

Lh
def
= L2hπ2h + (I − π2h)

Corollary:

For h, h0 small enough and u ∈ Vh

1 − C
hp

0

β
≤ 〈Lhu, u〉
〈
(Gh)−1u, u

〉 ≤ 1 + C
hp

0

β
.
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From two-grid to multigrid
Newton extension (W-cycle)

essential ingredient: use Newton’s method for the
nonlinear operator equation

X−1 − Gh = 0
basic idea:
X1 (below) is an improved approximation of (Gh)−1 over X0

X1 = NGh
(X0)

def
= 2X0 − X0 · Gh · X0

Lh
def
= NGh

(L2hπ2h + (I − π2h))

Andrei Draganescu, UMBC NIST, March 5, 2013
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From two-grid to multigrid
Newton extension (result)

Theorem (A.D., Dupont 2004):

For h, h0 sufficiently small and u ∈ Vh

1 − C
hp

β
≤ 〈Lhu, u〉
〈
(Gh)−1u, u

〉 ≤ 1 + C
hp

β
.
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Numerical results
First test case: one dimensional advection-diffusion equation

Forward problem:

∂tz − ∂x(a∂xz + bz) + cz = 0 , on (0, 1), z(·, 0) = u .

We will test multigrid with up to 6 levels vs. conjugate
gradient.
Measures of success:

measure 1: cost(inverse problem) / cost(forward problem)
measure 2: cost(inverse problem) / cost(CG solve)
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Numerical results
First test case: one dimensional advection-diffusion equation
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Numerical results
First test case: one dimensional advection-diffusion equation

Table: Iteration count (I/F) for the W-cycle; β = 10−3.

N 1 2 3 4 5 6
200 15 (32.3) 11 (61.1) 9 (29.6) 7 (19.4) 6 (16.2) 5 (13.7)
400 16 (34.1) 9 (48) 7 (22.8) 6 (16.8) 5 (13.8)
800 16 (34) 7 (38) 6 (19.8) 5 (14.4)

1600 16 (34) 6 (32) 5 (16.9)
3200 17 (36) 5 (26.7)
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A semilinear elliptic constrained problem
Control-constrained problems
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Semilinear elliptic constraints (with Jyoti Saraswat)

Optimal control problem:

minimize 1
2 ||y − yd ||2 + β

2 ||u||2 ,

subj to: Ay + c0y + f (y) = u , u ∈ L2(Ω) .
(3)
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A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

Assumptions and basic facts

A is a uniformly elliptic operator on Ω ⊂ R
d (d = 2, 3) with

sufficiently smooth coefficients, c0 ≥ 0 is in L∞.

f : R → R is increasing, sufficiently smooth (C3 will do).

Monotone operator theory guarantees unique solution
u → y(u) ∈ H1

0 .

Stampacchia technique produces L∞-estimates for y(u)
independent of c0, f : ||y(u)||L∞ ≤ C∞||u||L2 .

Full elliptic regularity is assumed: y(u) ∈ H2.

Mesh to allow for discrete FE maximum principle.

Andrei Draganescu, UMBC NIST, March 5, 2013
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A semilinear elliptic constrained problem
Control-constrained problems
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Reduced form of control problem

Unconstrained optimal control problem:

minimize 1
2 ||y(u) − yd ||2 + β

2 ||u||2 (4)

Existence of optimal control ū ∈ L2(Ω) guaranteed by standard
techniques: optimal state ȳ = y(ū) ∈ H2(Ω) ∩ H1

0 (Ω).

Uniqueness of the optimal control ū is not guaranteed in general.

The optimal control problem may not be convex.

Andrei Draganescu, UMBC NIST, March 5, 2013
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Solving the control problem

The state is twice differentiable with respect to the control
so the cost functional is twice differentiable.

Apply Newton’s method to solve the control problem:

un+1 = un − Hessian−1gradient .

Grid-sequencing used to obtain good initial guess.

Adjoint methods used to obtain gradients and the
Hessian-vector multiplication.

Andrei Draganescu, UMBC NIST, March 5, 2013
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A semilinear elliptic constrained problem
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Optimal control problems constrained by the Stokes equations

Gradient and Hessian using adjoints

L = L(u) = A + f ′(u) is the linearization of the semilinear
operator at y .

Gradient: ∇uJ(u) = (L∗)−1(y(u) − yd ) + βu .

Hessian-vector multiplication:

G(u)v = L∗−1(1 − f ′′(u)q(u))L−1v + βv ,

where
q = q(u) = (L∗)−1(y(u) − yd ) .

Cost of Hessian-vector multiplication is equivalent to two
linear elliptic solves.

Andrei Draganescu, UMBC NIST, March 5, 2013
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Mesh independence of Newton’s method
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u
h

u
exact

Plot parameters: α=100,β=1e−7 and N=400

Table: Newton iterations

Resolution 50 100 200 250 300 350
Newton’s iterations 4 4 4 4 4 4
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A semilinear elliptic constrained problem
Control-constrained problems
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Hessian and preconditioner

The Hessian:

G(u) = L∗−1(1 − f ′′(u)q(u))L−1 + βI

As before, the Hessian is smoothing.

Proposed two grid preconditioner:

Mh = βρ + G2h(πu)π

Andrei Draganescu, UMBC NIST, March 5, 2013
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A semilinear elliptic constrained problem
Control-constrained problems
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Two-grid preconditioner

Theorem (J. Saraswat, A.D., 2012)

On a quasi-uniform mesh and under usual elliptic regularity
assumptions

||(Gh(u) − Mh(u))v || ≤ Ch2||v ||, ∀v ∈ L2(Ω) ,

C independent of h.

Remark:

Optimal order in h

Andrei Draganescu, UMBC NIST, March 5, 2013
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One dimensional, in-vitro experiments

Table: Joint spectrum analysis in 1D: f (y) = αy 3

N zk = max (abs(ln d)) ratio = zk
zk+1

10 2.426486 N/A
20 0.569206 4.262924
40 0.134355 4.236559
80 0.034536 3.890306
160 0.008709 3.965544
320 0.002182 3.990972
640 0.000545 3.997717

Here d = eig(Gh, Th).
The spectral distance between constructed preconditioner and
Hessian is O(h2), which is the optimal rate.
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A semilinear elliptic constrained problem
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Two-dimensional, in-vivo experiments with f (y) = αy 3

Table: α = 1, β = 10−4

iterate N 16 32 64 128
1 7 (12) 6 (12) 4 (12) 4 (12)
2 7 (11) 5 (11) 4 (11) 4 (11)
3 4 (5) 3 (5) 2 (6) 1 (6)

Table: α = 1, β = 10−5

iterate N 16 32 64 128
1 11 (21) 8 (21) 5 (21) 4 (21)
2 10 (20) 8 (20) 5 (20) 4 (20)
3 5 (9) 4 (9) 2 (9) 2 (9)
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Two-dimensional, in-vivo experiments

Table: α = 10, β = 10−5

iterate N 16 32 64 128
1 11 (21) 8 (21) 5 (21) 4 (21)
2 11 (20) 8 (20) 5 (20) 4 (20)
3 10 (16) 5 (16) 5 (16) 4 (16)
4 4 (8) 2 (8) 2 (8) 1 (8)

Table: α = 10, β = 10−7

iterate N 16 32 64 128
1 40 (76) 21 (93) 9 (99) 5 (98)
2 39 (65) 16 (72) 6 (71) 5 (71)
3 33 (50) 13 (48) 6 (49) 5 (46)
4 13 (12) 2 (12) 2 (12) 2 (12)
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A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

Problem formulation

Model problem:
K : L2(Ω) → L2(Ω) compact, linear, f ∈ L2(Ω)

Optimal control problem

minimize 1
2 ||Ku − yd ||2 + β

2 ||u||2
subj to: u ∈ L2(Ω), a ≤ u ≤ b

(5)

Andrei Draganescu, UMBC NIST, March 5, 2013
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Optimal control problems constrained by the Stokes equations

Why bound-constraints ?

Physically meaningful, other qualitative considerations
Example: solution is localized if the “true” solution is so
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Discrete problem formulation

Norms: discrete norm ||u||2h =
∑

wi u2(Pi)

Inequality constraints: a ≤ u ≤ b, enforced at nodes
(strong enforcement)

Discrete optimal control problem

minimize 1
2 ||Khu − yd ,h||2h + β

2 ||u||2h
subj to: u ∈ Vh, ah(P) ≤ u(P) ≤ bh(P), ∀ node P

(6)
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Summary

A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

Optimization methods

Optimization algorithms (outer iteration):
Semi-smooth Newton methods (active-set type strategies)
Interior point methods (IPM)

Require: solving few linear systems at each outer iteration
semi-smooth Newton: subsystem (principal minor)
IPM: modified, same-size system

Goals:
small # of outer iterations (prefer mesh-independence)
here: fast solvers for the linear systems:
# of linear iterations to decrease with increasing
resolution
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Nonlinear constraints, control constraints
Summary

A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

A. Primal-dual interior point methods (with Cosmin
Petra)

For fixed resolution Vh and uniform grids:

solve perturbed KKT system for µ ↓ 0:

(βI + KT K)u − v = −KT yd

u · v = µe
u, v > 0

Mehrotra’s predictor-corrector IPM

(βI + KT K)∆u − ∆v = rc

V∆u + U∆v = ra

reduced system

(βI + U−1V + KT K)∆u = rc − U−1ra

with U, V diagonal, positive
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A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

The systems

the matrix: (βI + U−1V + KT K)

U−1V represents a relatively smooth function

need to invert
(Dβ+λ + KT K

︸︷︷︸

K∗K

)

with Dβ+λ = βI + U−1V

... and further
D√

β+λ(I + AKT KA
︸ ︷︷ ︸

(KA)∗(KA)

)D√
β+λ

with A = D√
1/(β+λ)
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A semilinear elliptic constrained problem
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Optimal control problems constrained by the Stokes equations

The systems

Need good preconditioner for

Gh = I + (KhAh)
∗(KhAh) = I + (Lh)

∗(Lh)

with Ah = D√
1/(β+λh)

Assume λh = interpolate(λ)

Lh
def
= KhAh

L def
= KD√

1/(β+λ)
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A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

Key facts

Gh = I + Lh
∗Lh is dense, available only matrix-free

cond(I + Lh
∗Lh) = O(β−1), mesh-independent, large

Ah = D√
1/(β+λh)

neutral with respect to smoothing

L(h) = K(h)A(h) same smoothing properties as K(h)

Andrei Draganescu, UMBC NIST, March 5, 2013



Model problems
Unconstrained problems with linear PDE constraints

Nonlinear constraints, control constraints
Summary

A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations

Two-grid preconditioner

Theorem (A.D. and Petra, 2009)

On a uniform grid

ρ(I − Mh
−1Gh) ≤ Ch2||(β + λ)−

1
2 ||W 2

∞

Remarks:

optimal order in h

quality expected to decay as µ ↓ 0 since λ only L2 in general

for fixed β # linear iterations/outer iteration expected to decrease
with h ↓ 0

Mh is slightly non-symmetric
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A semilinear elliptic constrained problem
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Backwards advection-diffusion problem example

Optimal control problem

minimize 1
2 ||S(T )u − yd ||2 + β

2 ||u||2
subj to: u ∈ L2(Ω), 0 ≤ u ≤ 1

(7)

z(·, t) transported quantity subjected to:






∂tz −∇ · (a∇z + bz) + cz = 0 on Ω
z(x , t) = 0 for x ∈ ∂Ω, t ∈ [0, T ]
z(x , 0) = u(x) for x ∈ Ω

K = S(T ): initial - to - final

K u = S(T )u def
= z(·, T )
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Solution
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Iteration count / predictor-step linear systems
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Evolution of quantities of interest

Evolution of ||λ−
1
2 ||W 2

∞

, µ, and last λh:
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Another measure of success

Total number of finest-level mat-vecs (application of K )

h \ levels 1 2 3
1/1024 728 581 661
1/2048 740 463 489
1/4096 764 403 425
1/8192 768 377 403
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Elliptic-constrained problem

minimize 1
2 ||y − f ||2 + β

2 ||u||2
subj to: −∆y = u, −1 ≤ u ≤ 1

∆f = 3
2 sin(2πx) sin(2πy), β = 10−6
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Iteration count / predictor-step linear systems
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Mat-vecs count

Total number of finest-level mat-vecs (Poisson solves)

h \ levels 1 2 3 4
1/256 354 282 572 –
1/512 355 220 250 452
1/1024 355 198 210 224
1/2048 363 172 174 174
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B. Semismooth Newton methods

KKT system (unperturbed):

(βI + KT K)u − v = −KT yd

u · v = 0
u, v ≥ 0

Reformulate as a semismooth nonlinear system:

(βI + KT K)u − v = −KT yd

v − max(0, v − βu) = 0 .
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A semilinear elliptic constrained problem
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Active set strategy

Define the active index-set by

A = {i ∈ {1, . . . , N} : (v − βu)i > 0}

and the inactive index-set by

I = {i ∈ {1, . . . , N} : (v − βu)i ≤ 0} .

The semismooth Newton method produces a sequence of
active/inactive sets (Ak , Ik )k=1,2,... that approximate (A, I).
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Linear systems

The critical system to be solved is at each semismooth
Newton iterate has the form

GIuI

def
= (βI + KTK)IIuI = bI .

where I is the current guess at the inactive set.

Similar preconditioning ideas can be applied: need a
coarse space V2h

I ⊂ Vh
I then preconditioner is

Mh = β(I − π2h
I) + Gh

Iπ2h
I
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Coarse space
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Analysis

Theorem (A.D., 2011)

ρ(I − Mh
−1Gh) ≤ Cβ−1

(

h2 +
√

µh
in
)

, (8)

where µh
in is the Lebesgue measure of ∂nΩh

in

Preconditioner is expected to be of suboptimal quality:

ρ(I − Mh
−1Gh) ≤ Ch

1
2 .
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Outline

1 Model problems

2 Unconstrained problems with linear PDE constraints

3 Nonlinear constraints, control constraints
A semilinear elliptic constrained problem
Control-constrained problems
Optimal control problems constrained by the Stokes equations
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Stokes control (with Ana Maria Soane)

Model optimal control problem:

minimize γu
2 ||~u − ~ud ||2 +

γp
2 ||p − pd ||2 + β

2 ||~f −~f0||2
subj to: −ν∆~u + ∇p = ~f ,

div ~u = 0 , ~u|Ω = ~0

Identify force ~f closest to reference force ~f0 leading to given
velocity and/or pressure “measurements” ~ud , pd
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The Hessian

The Hessian:
Gh = βI + γuUh

∗Uh + γpPh
∗Ph

The proposed two-grid preconditioner:

Mh = βρ + G2hπ

Lh = (Mh)
−1 = β−1ρ + (G2h)−1π
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Two-grid preconditioner: Analysis

Theorem (A.D., A. Soane 2011)

With a Taylor-Hood Q2 − Q1 discretization and under regularity
assumptions allowing for

||(U − Uh)(f )|| ≤ Ch2||f ||, ||(P − Ph)(f )|| ≤ Ch||f ||

we have

dσ(Gh, Mh) ≤
C
β

(

γuh2 + γph
)

,

C independent of h, β, provided the coarsest grid is sufficiently
fine.
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Numerical Experiments – Pressure control

Table: Pressure measured only (γu = 0, γp = 1)

N 16 32 64 128 256
no. levels 1 2 3 1 2 3 1 2 3 1 2 3 1 4
β = 10−2 29 15 - 29 12 16 29 10 12 30 - 10 30 15
β = 10−3 59 35 - 62 21 - 66 14 22 71 - 16 70 21

Time comparison at n = 256, number of state variables (velocity and pressure): 588290, number of control
variables: 261121

no. levels 1 4
β = 10−2 3460 s 2156 s
β = 10−3 8457 s 2866 s

Matlab on 2× Intel (Nehalem) Xeon E5540 Quad Core (8M Cache, 2.53 GHz) CPUs with 24Gig RAM
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Numerical Experiments – Velocity control

Table: Velocity measured only (γu = 1, γp = 0)

N 32 64 128 256
no. levels 1 2 3 1 2 3 1 2 3 1 2 4
β = 10−4 11 3 3 11 3 3 - - - - - -
β = 10−5 20 4 4 20 3 3 21 - 3 22 - 2
β = 10−6 42 6 8 44 4 4 45 - 3 45 - 3

Time comparison at n = 256, number of state variables (velocity and pressure): 588290, number of control
variables: 261121

no. levels 1 4
β = 10−5 2622 s 393 s
β = 10−6 5303 s 599 s
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Conclusions

Multigrid techniques open the possibility of solving an
increasing class of large-scale PDE constrained optimal
control problems at a reasonable cost.

Main ingredients: a fast and reliable outer iteration
(Newton, IPM, semismooth Newton), fast methods for the
linear systems involved.

Current techniques do not work as well for
control-constrained problems (require special formulation,
linear elements).
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Future work and open problems

Good preliminary results for steady-state Navier-Stokes
controlled problems.

Space-time PDEs and controls.

Hyperbolic PDE constrained problems.

Control-constrained problems: reconcile multigrid
preconditioners for IPM and SSNM; handle higher order
elements.

State-constrained problems: will any of this work?
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